On the effect of pressure and carrier gas on homogeneous water nucleation.
نویسندگان
چکیده
Homogeneous nucleation rates of water droplets were measured at a nucleation temperature close to 240 K in a Pulse-Expansion Wave Tube (PEWT). Several measures were taken to improve the data obtained with the PEWT. For instance, the molar water vapor fraction was determined with three independent techniques. The resulting standard uncertainty of the supersaturation was within 1.8%. Results are given for water nucleation in helium at 100 kPa and at 1000 kPa and in nitrogen at 1000 kPa. Two trends were observed: (i) the values of the nucleation rate of water in helium at 1000 kPa are slightly but significantly higher (factor 3) than its values at 100 kPa and (ii) nucleation rates of water in nitrogen at 1000 kPa are clearly higher (factor 10) than in helium at the same pressure. It is argued that the explanation of the two observed trends is different. For case (i), it is the insufficient thermalization of the growing water clusters in helium at the lowest pressure that has a reducing effect on the nucleation rate, although a full quantitative agreement has not yet been reached. For case (ii), thermal effects being negligible, it is the pressure dependency of the surface tension, much stronger for nitrogen than for helium, that explains the trends observed, although also here a full quantitative agreement has not yet been achieved.
منابع مشابه
Molecular dynamics of homogeneous nucleation in the vapor phase of Lennard-Jones. III. Effect of carrier gas pressure.
A molecular dynamics simulation of vapor phase nucleation has been performed with 40,000 Lennard-Jones particles for the target gas and 0-160,000 particles for the carrier gas. Three carrier gas models are adopted, including a soft-core model, a Lennard-Jones model, and a modified Lennard-Jones model in which the attractive interaction can be adjusted. The effect of the carrier-gas pressure is ...
متن کاملFabrication, characterization and investigation of gas sensing properties of MoO3 thin films
In this research, molybdenum oxide (α-MoO3) thin films were coated on glass substrates using spray pyrolysis technique. 0.05 M ammonium heptamolybdate tetrahydrate was used as precursor and deionized water as solvent. The effects of carrier gas pressure, during the spraying of the solution, on the structural, optical, morphological and gas sensing properties of thin films were studied. X-ray di...
متن کاملHigh pressure nucleation in water/nitrogen systems
Nucleation rate measurements of water in the presence of nitrogen as a carrier gas are reported at total pressures near 10, 25, and 40 bar, and temperatures of 230 and 250 K. The results were obtained using our pulse-expansion wave tube, particularly suited for high pressure nucleation research. Enhanced fugacity of water vapor in the mixture, due to the presence of nitrogen, was quantitatively...
متن کاملStudying the Effect of Reformer Gas and Exhaust Gas Recirculation on Homogeneous Charge Compression Ignition Engine Operation
Combustion in homogeneous charge compression ignition (HCCI) engine is controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily especially at lower and higher engine load. Charge strati...
متن کاملInvestigating the Effects of Inlet Conditions and Nozzle Geometry on the Performance of Supersonic Separator Used for Natural Gas Dehumidification
Supersonic separators have found extensive applications in dehumidification of natural gases since 2003. Unlike previous studies, which have investigated the inlet conditions and nozzle geometry of supersonic separators for pure fluids, the present study employed a combination of momentum, heat, and mass transfer equations along with Virial equation of state (EOS) to inspect the effect of inlet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 142 16 شماره
صفحات -
تاریخ انتشار 2015